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Single-component molecular conductors based on zinc com-
plexes with filled 3d shells and extended-TTF ligands, [ZnL2]
(L = tmdt, dmdt, and dt) were prepared. The crystal structure
of semiconducting [Zn(tmdt)2] (� (rt) � 50� cm) was deter-
mined by the synchrotron radiation X-ray powder diffraction
experiments. The molecule has a tetrahedral geometry and two
ligand planes are almost perpendicular to each other.

Recently, a considerable interest has been attracted to
the conducting systems consisting of single-component
molecules.1,2 We have recently reported the observation of
de Haas–van Alphen oscillation of the first single-component
molecular metal, [Ni(tmdt)2] (tmdt = trimethylenetetrathia-
fulvalenedithiolate),3 which rigorously proved [Ni(tmdt)2] to
be a three-dimensional metal as expected. However, there seems
to remain some question on the role of d orbitals of the central
transition metal atom. Is the role of d orbital of the central tran-
sition atom is essential to make the system conducting? Since the
zinc atom has the filled 3d shell, the role of the d orbitals will be
less important. The ligand � orbitals will be responsible for the
band formation. Herein, we report the crystal structure, electrical
and magnetic properties of Zn complexes with extended-TTF
(= tetrathiafulvalene) dithiolate ligands, [ZnL2] (L = tmdt (1),
dmdt (2), and dt (3); dmdt = dimethyltetrathiafulvalenedithio-
late and dt = tetrathiafulvalenedithiolate).

All the syntheses were carried out under argon atmo-
sphere.4,5 (Me4N)2[ZnL2] (L ¼ tmdt, dmdt, and dt) were ob-
tained as air-unstable orange powder by hydrolysis of three li-
gands with cyanoethyl group using 25wt% Me4NOH/methanol
in dry tetrahydrofuran, followed by the reaction of ZnCl2/dry
methanol solution at �78 �C to the room temperature. Electro-
chemical oxidation of (Me4N)2[ZnL2] (L ¼ tmdt, dmdt, and
dt) was performed in the presence of nBu4N.PF6 in dry acetoni-
trile under a constant current of 0.1mA. The air-stable black
microcrystals were obtained after 2 weeks.6 The electron probe
microanalysis (EPMA) measurements on 1 and 2 showed that
the ratio of S and Zn atoms of these compounds is almost 12:1.

The synchrotron radiation X-ray powder diffraction experi-
ments were carried out on 1 by use of the imaging plate detectors
and the large Debye–Sherrer Camera at the SPring-8 BL02B2.7

The wavelength of incident X-ray was 1 �A and the exposure time
of measurement was 120min. An X-ray pattern was obtained
in 0.01� steps in 2� from 3.50� to 72.00�. The crystal structure
was determined by Rietveld/MEM method, which revealed that
both the molecular geometry and packing resemble those of

[Cu(dmdt)2] (Figure 1).
8 The geometry around Zn atom is tetra-

hedral and the Zn–S distances are both 2.326(2) �A and the S–Zn–
S angle is 94.21(7)�. The ligands are planar and two ligand
planes are almost perpendicular to each other (the dihedral angle
of two planes = 89.63� (cf. 80.29� in [Cu(dmdt)2]). As shown in
Figure 1b, one of the tmdt ligands overlaps, face-to-face, with
the ligand of the neighboring molecule, and the opposite side li-
gand overlaps with the ligand of the third molecule. The interpla-
nar distance between the ligand planes is 3.438 �A, which is fairly
shorter than 3.496 �A in [Cu(dmdt)2]. The tmdt ligands take an
arrangement similar to the ‘‘�-type arrangement’’ of organic
superconductors and the adjacent ‘‘ligand planes’’ with �-type
arrangement are connected by Zn atoms. In addition, there
exist many intermolecular short S���S contacts (<3:7 �A) (see
Figure 1b). Thus [Zn(tmdt)2] (1) is considered to have 3D con-
duction paths.

The magnetic susceptibility of 1 was measured using a
SQUID magnetometer at a field of 1 Tesla over the temperature
range of 2–300K. The diamagnetic contribution of magnetic
susceptibility (�2:92� 10�4 emu�mol�1) was deduced from
the susceptibility measurements of tmdt(CH2CH2CN)2 and
Pascal’s constants. The magnetic susceptibility of 1 gave almost
temperature-independent paramagnetism (�p ¼ 1:3� 10�4

Figure 1. a) Molecular structure of [Zn(tmdt)2] (1). b) Crystal
structure of 1. Short S���S contacts A, B, C, and D were shown
with dotted lines. A: 3.542 �A, B: 3.656 �A, C: 3.567 �A, D:
3.659 �A.
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emu�mol�1) at T > 230K, below which the system seems to be
almost nonmagnetic (Figure 2). The complexes 2 and 3 showed
almost the linear decrease of �T values down to ca. 100K and
gave the similar tendency of magnetic behavior to that of 1.

[Cu(dmdt)2] has been reported to be a paramagnetic semi-
conductor (� (rt) = 0.3� cm, Ea ¼ 40meV).8 The magnetic
susceptibilities suggested that the localized 84% Cu2þ 1/2 spin
and �-conduction electrons coexist (Figure 2). In addition, sim-
ilar to the cases of Zn complexes, there exists a T-linear term in
the �T vs T plot of [Cu(dmdt)2] (�p ¼ 3:8� 10�4 emu�mol�1,
T > 100K), though the origin of temperatue-independent para-
magnetism is not clear at present.

The electrical resistivities of the compressed pellet samples
of 1–3 were measured by usual four-probe method, which
showed these systems are semiconductors. But as for com-
pressed powder sample, 1 showed fairly small resistivities (�
(rt) = 50��cm (1), 2� 102 (2) and 2� 103 (3); Ea ¼ 0:15 eV
(1), 0.16 (2), and 0.11 (3)).

The extended-Hückel type tight-binding band structure

calculation of 1 was carried out.9 Figure 3a shows HOMO and
LUMO of 1. Those of [Cu(dmdt)2] are also shown for compar-
ison.9 As expected, there is almost no contribution from the d or-
bital. Consequently, HOMO and LUMO of Zn complex are al-
most degenerate. It might be possible that Zn complex has a trip-
let ground state but unfortunately ESR studies on the molecule
could not be made because of the very small solubility of the
complex. As mentioned above, owing to ‘‘�-type ligand arrange-
ment’’, there are fairly compact intermolecular S���S contacts,
which produces 3D conduction paths. The calculated density
of states (DOS) of 1 gave the band gap of about 0.1 eV
(Figure 3b). These results show that even the complexes without
the contribution of 3d orbitals can form a 3D conduction band.

In conclusion, we have prepared new zinc complexes with
extended-TTF dithiolate ligands, 1, 2, and 3. These complexes
are semiconducting and paramagnetic at high temperatures.
The crystal structure analysis of 1 revealed that extended-
TTF ligands form �-type arrangement similar to the case of
[Cu(dmdt)2].
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Figure 2. �T vs T plot of the susceptibilities of [Zn(tmdt)2] ( )
and [Cu(dmdt)2] ( ) (based on the data reported in ref 7). The
low-temperature impurity Curie terms were subtracted.

Figure 3. a) The HOMOs and the LUMOs of [Zn(tmdt)2] and
[Cu(dmdt)2]. b) Band energy dispersion curves and density of
state of 1.
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